Sums of Squares, Moment Matrices and Optimization over Polynomials
نویسنده
چکیده
We consider the problem of minimizing a polynomial over a semialgebraic set defined by polynomial equations and inequalities, which is NP-hard in general. Hierarchies of semidefinite relaxations have been proposed in the literature, involving positive semidefinite moment matrices and the dual theory of sums of squares of polynomials. We present these hierarchies of approximations and their main properties: asymptotic/finite convergence, optimality certificate, and extraction of global optimum solutions. We review the mathematical tools underlying these properties, in particular, some sums of squares representation results for positive polynomials, some results about moment matrices (in particular, of Curto and Fialkow), and the algebraic eigenvalue method for solving zero-dimensional systems of polynomial equations. We try whenever possible to provide detailed proofs and background.
منابع مشابه
Optimization over polynomials: Selected topics
Minimizing a polynomial function over a region defined by polynomial inequalities mod4 els broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic 5 approaches have emerged recently for computing the global minimum, by combining tools from real 6 algebra (sums of squares of polynomials) and functional analysis (moments of measures) with semidef7 inite optim...
متن کاملPositive Polynomials in Scalar and Matrix Variables, the Spectral Theorem and Optimization
We follow a stream of the history of positive matrices and positive functionals, as applied to algebraic sums of squares decompositions, with emphasis on the interaction between classical moment problems, function theory of one or several complex variables and modern operator theory. The second part of the survey focuses on recently discovered connections between real algebraic geometry and opt...
متن کاملJanuary 7, 2010 POSITIVE POLYNOMIALS IN SCALAR AND MATRIX VARIABLES, THE SPECTRAL THEOREM AND OPTIMIZATION
This is expanded from the original on behalf of Bill’s classes. We follow a stream of the history of positive matrices and positive functionals, as applied to algebraic sums of squares decompositions, with emphasis on the interaction between classical moment problems, function theory of one or several complex variables and modern operator theory. The second part of the survey focuses on recentl...
متن کاملTrace-positive polynomials, sums of hermitian squares and the tracial moment problem
A polynomial f in non-commuting variables is trace-positive if the trace of f(A) is positive for all tuples A of symmetric matrices of the same size. The investigation of trace-positive polynomials and of the question of when they can be written as a sum of hermitian squares and commutators of polynomials are motivated by their connection to two famous conjectures: The BMV conjecture from stati...
متن کاملThe tracial moment problem and trace-optimization of polynomials
The main topic addressed in this paper is trace-optimization of polynomials in noncommuting (nc) variables: given an nc polynomial f , what is the smallest trace f(A) can attain for a tuple of matrices A? A relaxation using semidefinite programming (SDP) based on sums of hermitian squares and commutators is proposed. While this relaxation is not always exact, it gives effectively computable bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008